....
A. \frac{10}{3}
B. \frac{11}{3}
C. 4
D. \frac{13}{3}
E. \frac{14}{3}
Pembahasan:
rumus rata-rata atau mean adalah
\bar{x}=\frac{1}{n}\left (x _{1} \: +\: x_{2}\: +\: ....\: +\: x_{n}\right )
\frac{a+b+c}{3}=2\Leftrightarrow a+b+c=6
\frac{a^{2}+b^{2}+c^{2}}{3}=4\Leftrightarrow a^{2}+b^{2}+c^{2}=12
a+b+c=6 (kedua ruas dikuadratkan)
\left ( a+b+c \right )^{2}=6^{2}
\left ( a+b+c \right )\left ( a+b+c \right )=36
a^{2}+ab+ca+ab+b^{2}+bc+ca+bc+c^{2}=36
a^{2}+b^{2}+c^{2}+2ab+2bc+2ca=36
a^{2}+b^{2}+c^{2}+2\left ( ab+bc+ca \right )=36
\begin{array} \ 12+2\left ( ab+bc+ca \right )=36\end{array}
\begin{array} \ 2\left ( ab+bc+ca \right )=24\end{array}
ab+bc+ca=12
rata-rata dari ab, bc, ca
\frac{ab+bc+ca}{3}=\frac{12}{3}
=4
=4
___________________________________ C
2. Diketahui f\left ( x \right )=x^{2}+1 dan g\left ( x \right )=ax+2, dengan a\neq 0.
Jika \left ( f\, o\, g^{-1} \right )\left ( 1 \right )=5, maka 4a^{2}-3=\: ....
A. -3
B. -2
C. -1
D. 1
E. 2
Pembahasan:
g\left ( x \right )=ax+b maka g^{-1}\left ( x \right )=\frac{x-b}{a}
f\left ( x \right )=x^{2}+1
g\left ( x \right )=ax+2 maka g^{-1}\left ( x \right )\frac{x-2}{a}
\begin{aligned}\left ( f\, o\, g^{-1} \right ) \left ( 1 \right )=5\\ f\left ( g^{-1} \left ( 1 \right )\right )=5\\ f\left ( \frac{1-2}{a} \right )=5\\ f\left ( \frac{-1}{a} \right )=5\\ \left ( \frac{-1}{a}^{2} \right )+1=5\\ \frac{1}{a^{2}}=4\\ a^{2}=\frac{1}{4}\end{aligned}
maka
4a^{2}-3=4\frac{1}{4}-3
=1-3
=-2
___________________________________________ B
Untuk lebih lengkapnya dapat di download di https://drive.google.com/file/d/1UE5PtNu1bUzpI5wdrrCosqEIdv2HI7F7/view?usp=sharing
Tidak ada komentar:
Posting Komentar