1. SBMPTN 2016 TKPA Matematika Dasar Kode 350
Jika $A^{2x}=2$, maka $\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}$=
....
(A) $\frac{31}{18}$
(B) $\frac{31}{9}$
(C) $\frac{32}{18}$
(D) $\frac{33}{9}$
(E) $\frac{33}{18}$
Pembahasan:
$A^{2x}=2$
kedua ruas kalikan dengan $A^{5x}$
$\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}$
= $\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}\; \cdot \: \frac{A^{5x}}{A^{5x}}$
= $\frac{A^{10x}-A^{0}}{A^{8x}+A^{2x}}$
= $\frac{\left (A^{2x} \right )^{5}-A^{0}}{\left (A^{2x} \right )^{4}+A^{2x}}$
= $\frac{2^{5}-1}{2^{4}+2}$
= $\frac{32-1}{16+2}$
= $\frac{31}{18}$
Jawaban _________________________ (A)
2. UM UGM 2016 Kode 371
Jika $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ dapat dinyatakan sebagai
$\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$, maka $a+b+c$= ....
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
Pembahasan:
$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{1}{\left (\sqrt{2}+\sqrt{3} \right )+\sqrt{5}}\; \cdot \;\frac{\left ( \sqrt{2} +\sqrt{3}\right )-\sqrt{5}}{\left (\sqrt{2}+\sqrt{3} \right )-\sqrt{5}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{\left (\sqrt{2}+\sqrt{3} \right )^{2}-\left (\sqrt{5} \right )^{2}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{\left (\sqrt{2}\right )^{2}+2\cdot \sqrt{2}\cdot \sqrt{3}+\left ( \sqrt{3} \right )^{2}-5}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2+2 \sqrt{6}+3-5}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2 \sqrt{6}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2 \sqrt{6}}\; \cdot \; \frac{\sqrt{6}}{\sqrt{6}}$
= $ \frac{\sqrt{2}\: .\: \sqrt{6} +\sqrt{3}\: .\: \sqrt{6}-\sqrt{5}\: \cdot\: \sqrt{6}}{2 \left (\sqrt{6} \right )^{2}}$
= $\frac{\sqrt{12} +\sqrt{18}-\sqrt{30}}{2 \: \cdot \: 6}$
= $\frac{\sqrt{4}\: \cdot \: \sqrt{3} +\sqrt{9}\: \cdot \: \sqrt{2}-\sqrt{30}}{12}$
= $\frac{2\sqrt{3} +3 \sqrt{2}-\sqrt{30}}{12}$
= $\frac{3\sqrt{2} +2 \sqrt{3}-\sqrt{30}}{12}$
$\frac{3\sqrt{2} +2 \sqrt{3}-\sqrt{30}}{12}=\frac{a\sqrt{2} +b \sqrt{3}+c\sqrt{30}}{12}$
Jadi $a=3$, $b=2$, $c=-1$, maka
$a+b+c = 3+2-1$
$= 4$
Jawaban _________________________ (E)
3. UM UGM 2016 Kode 371
Jika $a^{x}=b^{y}=c^{z}$ dan $b^{2}=ac$ maka $x$ = ....
(A) $\frac{2yz}{y+z}$
(B) $\frac{2yz}{2z-y}$
(C) $\frac{2yz}{2y-z}$
(D) $\frac{yz}{2y-z}$
(E) $\frac{yz}{2z-y}$
Pembahasan:
Misalkan $a^{x}=b^{y}=c^{z}=m$
maka $a^{x}=m$
$a=m^{\frac{1}{x}}$
$b^{y}=m$
$b=m^{\frac{1}{y}}$
$c^{z}=m$
$c=m^{\frac{1}{z}}$
$b^{2}=ac$
$\left ( m^{\frac{1}{y}} \right )^{2}=m^{\frac{1}{x}}\: \cdot \: m^{\frac{1}{z}}$
$m^{\frac{2}{y}}=m^{\frac{1}{x}+\frac{1}{z}}$
$\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}\\ \frac{2z-y}{yz}=\frac{1}{x}$
$\frac{yz}{2z-y}=x$
Jawaban _________________________ (E)
Jika $A^{2x}=2$, maka $\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}$=
....
(A) $\frac{31}{18}$
(B) $\frac{31}{9}$
(C) $\frac{32}{18}$
(D) $\frac{33}{9}$
(E) $\frac{33}{18}$
Pembahasan:
$A^{2x}=2$
kedua ruas kalikan dengan $A^{5x}$
$\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}$
= $\frac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}\; \cdot \: \frac{A^{5x}}{A^{5x}}$
= $\frac{A^{10x}-A^{0}}{A^{8x}+A^{2x}}$
= $\frac{\left (A^{2x} \right )^{5}-A^{0}}{\left (A^{2x} \right )^{4}+A^{2x}}$
= $\frac{2^{5}-1}{2^{4}+2}$
= $\frac{32-1}{16+2}$
= $\frac{31}{18}$
Jawaban _________________________ (A)
2. UM UGM 2016 Kode 371
Jika $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ dapat dinyatakan sebagai
$\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$, maka $a+b+c$= ....
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
Pembahasan:
$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{1}{\left (\sqrt{2}+\sqrt{3} \right )+\sqrt{5}}\; \cdot \;\frac{\left ( \sqrt{2} +\sqrt{3}\right )-\sqrt{5}}{\left (\sqrt{2}+\sqrt{3} \right )-\sqrt{5}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{\left (\sqrt{2}+\sqrt{3} \right )^{2}-\left (\sqrt{5} \right )^{2}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{\left (\sqrt{2}\right )^{2}+2\cdot \sqrt{2}\cdot \sqrt{3}+\left ( \sqrt{3} \right )^{2}-5}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2+2 \sqrt{6}+3-5}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2 \sqrt{6}}$
= $\frac{\sqrt{2} +\sqrt{3}-\sqrt{5}}{2 \sqrt{6}}\; \cdot \; \frac{\sqrt{6}}{\sqrt{6}}$
= $ \frac{\sqrt{2}\: .\: \sqrt{6} +\sqrt{3}\: .\: \sqrt{6}-\sqrt{5}\: \cdot\: \sqrt{6}}{2 \left (\sqrt{6} \right )^{2}}$
= $\frac{\sqrt{12} +\sqrt{18}-\sqrt{30}}{2 \: \cdot \: 6}$
= $\frac{\sqrt{4}\: \cdot \: \sqrt{3} +\sqrt{9}\: \cdot \: \sqrt{2}-\sqrt{30}}{12}$
= $\frac{2\sqrt{3} +3 \sqrt{2}-\sqrt{30}}{12}$
= $\frac{3\sqrt{2} +2 \sqrt{3}-\sqrt{30}}{12}$
$\frac{3\sqrt{2} +2 \sqrt{3}-\sqrt{30}}{12}=\frac{a\sqrt{2} +b \sqrt{3}+c\sqrt{30}}{12}$
Jadi $a=3$, $b=2$, $c=-1$, maka
$a+b+c = 3+2-1$
$= 4$
Jawaban _________________________ (E)
3. UM UGM 2016 Kode 371
Jika $a^{x}=b^{y}=c^{z}$ dan $b^{2}=ac$ maka $x$ = ....
(A) $\frac{2yz}{y+z}$
(B) $\frac{2yz}{2z-y}$
(C) $\frac{2yz}{2y-z}$
(D) $\frac{yz}{2y-z}$
(E) $\frac{yz}{2z-y}$
Pembahasan:
Misalkan $a^{x}=b^{y}=c^{z}=m$
maka $a^{x}=m$
$a=m^{\frac{1}{x}}$
$b^{y}=m$
$b=m^{\frac{1}{y}}$
$c^{z}=m$
$c=m^{\frac{1}{z}}$
$b^{2}=ac$
$\left ( m^{\frac{1}{y}} \right )^{2}=m^{\frac{1}{x}}\: \cdot \: m^{\frac{1}{z}}$
$m^{\frac{2}{y}}=m^{\frac{1}{x}+\frac{1}{z}}$
$\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}\\ \frac{2z-y}{yz}=\frac{1}{x}$
$\frac{yz}{2z-y}=x$
Jawaban _________________________ (E)
Tidak ada komentar:
Posting Komentar