1. UM UGM 2005 Kode 821
Jika $\sqrt{0,3+\sqrt{0,08}}=\sqrt{a}+\sqrt{b}$, maka $\frac{1}{a}+\frac{1}{b}$ = ....
A. 25
B. 20
C. 15
D. 10
E. 5
Pembahasan:
KonseR
$\begin{array}{lcl} \bigstar \; \sqrt{\left ( a+b \right )+\sqrt{a\cdot b}}=\sqrt{a}+\sqrt{b}\\\\ \; \; \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \sqrt{\left ( 0,3 \right )+\sqrt{0,08}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \: \sqrt{\left ( 0,3 \right )+\sqrt{4}\cdot \sqrt{0,02}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \sqrt{\left ( 0,3 \right )+2\sqrt{0,02}}=\sqrt{a}+\sqrt{b}\\ \sqrt{\left ( 0,2+0,1 \right )+2\sqrt{\left (0,2 \right )\left ( 0,1 \right )}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \sqrt{0,2}+\sqrt{0,1}=\sqrt{a}+\sqrt{b} \end{array}$
$\begin{array}{lcl} \sqrt{a}&=&\sqrt{0,2}\\ a&=&0,2\\ &=&\frac{2}{10}\\ &=&\frac{1}{5}\\\\ \sqrt{b}&=&\sqrt{0,1}\\ b&=&0,1\\ &=&\frac{1}{10}\\\\ \end{array}$
$\begin{array}{lcl} \frac{1}{a}+\frac{1}{b}&=&\frac{1}{\frac{1}{5}}+\frac{1}{\frac{1}{10}}\\ &=&5+10\\ &=&15 \end{array}$
Jawaban ____________________________________ (C)
2. SPMB 2006 Kode320
Diketahui$\begin{array}{lcl} 4^{x}=25\;\; \; dan \; 5^{y}=\frac{1}{8} \end{array}$. Bila $y$
nyatakan dalam $x$, diperoleh $y$ = ....
A. $\begin{array}{lcl} -\frac{3}{x} \end{array}$
B. $\begin{array}{lcl} -\frac{2}{x} \end{array}$
C. $\begin{array}{lcl} -\frac{x}{3} \end{array}$
D. $\begin{array}{lcl} -\frac{x}{2} \end{array}$
E. $\begin{array}{lcl} -\frac{2x}{3} \end{array}$
Pembahasan:
$\begin{array}{lcl} 4^{x}&=&25\\ \left ( 2^{2} \right )^{x}&=&25\\ \left (2^{x} \right )^{2}&=&25\\ 2^{x}&=&5\\\\ 5^{y}&=&\frac{1}{8}\\ \left ( 2^{x} \right )^{y}&=&8^{-1}\\ 2^{xy}&=&\left ( 2^{3} \right )^{-1}\\ 2^{xy}&=&2^{-3}\\ xy&=&-3\\ y&=&-\frac{3}{x} \end{array}$
Jawaban ____________________________________ (A)
Jika $\sqrt{0,3+\sqrt{0,08}}=\sqrt{a}+\sqrt{b}$, maka $\frac{1}{a}+\frac{1}{b}$ = ....
A. 25
B. 20
C. 15
D. 10
E. 5
Pembahasan:
KonseR
$\begin{array}{lcl} \bigstar \; \sqrt{\left ( a+b \right )+\sqrt{a\cdot b}}=\sqrt{a}+\sqrt{b}\\\\ \; \; \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \sqrt{\left ( 0,3 \right )+\sqrt{0,08}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \: \sqrt{\left ( 0,3 \right )+\sqrt{4}\cdot \sqrt{0,02}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \sqrt{\left ( 0,3 \right )+2\sqrt{0,02}}=\sqrt{a}+\sqrt{b}\\ \sqrt{\left ( 0,2+0,1 \right )+2\sqrt{\left (0,2 \right )\left ( 0,1 \right )}}=\sqrt{a}+\sqrt{b}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \sqrt{0,2}+\sqrt{0,1}=\sqrt{a}+\sqrt{b} \end{array}$
$\begin{array}{lcl} \sqrt{a}&=&\sqrt{0,2}\\ a&=&0,2\\ &=&\frac{2}{10}\\ &=&\frac{1}{5}\\\\ \sqrt{b}&=&\sqrt{0,1}\\ b&=&0,1\\ &=&\frac{1}{10}\\\\ \end{array}$
$\begin{array}{lcl} \frac{1}{a}+\frac{1}{b}&=&\frac{1}{\frac{1}{5}}+\frac{1}{\frac{1}{10}}\\ &=&5+10\\ &=&15 \end{array}$
Jawaban ____________________________________ (C)
2. SPMB 2006 Kode320
Diketahui$\begin{array}{lcl} 4^{x}=25\;\; \; dan \; 5^{y}=\frac{1}{8} \end{array}$. Bila $y$
nyatakan dalam $x$, diperoleh $y$ = ....
A. $\begin{array}{lcl} -\frac{3}{x} \end{array}$
B. $\begin{array}{lcl} -\frac{2}{x} \end{array}$
C. $\begin{array}{lcl} -\frac{x}{3} \end{array}$
D. $\begin{array}{lcl} -\frac{x}{2} \end{array}$
E. $\begin{array}{lcl} -\frac{2x}{3} \end{array}$
Pembahasan:
$\begin{array}{lcl} 4^{x}&=&25\\ \left ( 2^{2} \right )^{x}&=&25\\ \left (2^{x} \right )^{2}&=&25\\ 2^{x}&=&5\\\\ 5^{y}&=&\frac{1}{8}\\ \left ( 2^{x} \right )^{y}&=&8^{-1}\\ 2^{xy}&=&\left ( 2^{3} \right )^{-1}\\ 2^{xy}&=&2^{-3}\\ xy&=&-3\\ y&=&-\frac{3}{x} \end{array}$
Jawaban ____________________________________ (A)
Tidak ada komentar:
Posting Komentar