Materi Matematika Tingkat SMP dan SMA, Soal dan Pembahasan UN SMP, UN SMA, SBMPTN, dan STIS. Melayani Pembahasan Matematika Secara Online

Rabu, 06 September 2017

UM UGM Materi Logaritma

1. UM UGM 2017 Kode 723
Jika $\large ^{2}\textrm{log}\: \left ( a-b \right )=4$, maka $\large ^{4}\textrm{log}\: \left ( \frac{2}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}-\sqrt{b}} \right )$ = ....
   (A) $\large \frac{^{2}\textrm{log}\: a-4}{4}$
   (B) $\large \frac{^{2}\textrm{log}\: a+4}{4}$ 
   (C) $\large \frac{^{2}\textrm{log}\: a-2}{4}$ 
   (D) $\large \frac{^{2}\textrm{log}\: a+2}{4}$ 
   (E) $\large \frac{^{2}\textrm{log}\: a-1}{4}$ 

Pembahasan:
 
$\large ^{2}\textrm{log}\: \left ( a-b \right )=4$
         $\large \left ( a-b \right )=2^{4}$
                        $\large =16$

Pergunakan akar sekawan 
$\large \frac{a}{b+c\sqrt{d}}\: \cdot \: \frac{b-c\sqrt{d}}{b-c\sqrt{d}}$
$\large \frac{a}{b-c\sqrt{d}}\: \cdot \: \frac{b+c\sqrt{d}}{b+c\sqrt{d}}$ 


      $\large ^{4}\textrm{log}\: \left ( \frac{2}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}-\sqrt{b}} \right )$
$\large =\: \large ^{4}\textrm{log}\: \left ( \frac{2}{\sqrt{a}+\sqrt{b}}\: \cdot \: \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{2}{\sqrt{a}-\sqrt{b}}\: \cdot \: \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} \right )$
$\large =\: \large ^{4}\textrm{log}\: \left ( \frac{2\sqrt{a}-2\sqrt{b}}{a-b}+\frac{2\sqrt{a}+2\sqrt{b}}{a-b} \right )$
$\large =\: \large ^{4}\textrm{log}\: \left ( \frac{4\sqrt{a}}{a-b}\right )$
$\large =\: \large ^{4}\textrm{log}\: \left ( \frac{4\sqrt{a}}{16}\right )$
$\large =\: \large ^{4}\textrm{log}\: \left ( \frac{\sqrt{a}}{4}\right )$
$\large =\: \large ^{4}\textrm{log}\: \sqrt{a}-\: \large ^{4}\textrm{log} \: 4$
$\large =\: \large ^{2^{2}}\textrm{log}\: a^{\frac{1}{2}}-1$
$\large =\: \large ^{2}\textrm{log}\: a^{\frac{1}{4}}-1$
$\large =\frac{1}{4}\: \large ^{2}\textrm{log}\: a-1$
$\large =\frac{1}{4}\: \large ^{2}\textrm{log}\: a-\frac{4}{4}$
$\large =\frac{\: \large ^{2}\textrm{log}\: a-4}{4}$

Jawaban ________________________________ (A)


2. UM UGM 2017 Kode 823
    Jika  $\large \frac{3-3\sqrt{2}}{\sqrt{3}-\sqrt{6}}=b$, maka $\large ^{b}\textrm{log}\: 9$ = ....
    (A) 1
    (B) 2
    (C) 3
    (D) 4
    (E) 5

Pembahasan:
Pergunakan perkalian sekawan
 
 $\large \frac{a}{b+\sqrt{c}}=\frac{a}{b+\sqrt{c}}\: \cdot \: \frac{b-\sqrt{c}}{b-\sqrt{c}}$ 
 $\large \frac{a}{b-\sqrt{c}}=\frac{a}{b-\sqrt{c}}\: \cdot \: \frac{b+\sqrt{c}}{b+\sqrt{c}}$ 

 $\large b=\frac{3-3\sqrt{2}}{\sqrt{3}-\sqrt{6}}$ 
 $\large b=\frac{3-3\sqrt{2}}{\sqrt{3}-\sqrt{6}}\: \cdot \: \frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}+\sqrt{6}}$ 
 $\large b=\frac{3\left (1-\sqrt{2} \right )\left ( \sqrt{3} +\sqrt{6}\right ) }{3-{6}}$ 
 $\large b=\frac{3\left (1-\sqrt{2} \right )\left ( \sqrt{3} +\sqrt{6}\right ) }{-3}$ 
 $\large b=-\left ( 1-\sqrt{2} \right )\left ( \sqrt{3}+\sqrt{6} \right )$ 
 $\large b=-\left ( \sqrt{3}+\sqrt{6}-\sqrt{6}-\sqrt{12} \right )$ 
 $\large b=-\left ( \sqrt{3}-\sqrt{4}\cdot \sqrt{3} \right )$ 
 $\large b=-\left ( \sqrt{3}-2\sqrt{3} \right )$ 
 $\large b=-\left ( -\sqrt{3} \right )$ 
 $\large b=\sqrt{3}$ 

maka 
       $\large ^{b}\textrm{log}\: 9$ 
 $\large =^{\sqrt{3}}\textrm{log}\: 3^{2}$ 
 $\large =\: ^{3^{\frac{1}{2}}}\textrm{log}\: 3^{2}$ 
 $\large =\: ^{3}\textrm{log}\: 3^{4}$ 
 $\large =4$ 

Jawaban ________________________________ (D) 


3. UM UGM 2017 Kode 823
    Jika  $\large u=2^{x}$ dan $\large ^{u}\textrm{log}\: \left ( 2^{2x}-2^{x-2} \right )=3$, maka $\large 3^{x}$ = ....
    (A) 3
    (B) 1
    (C) $\large \frac{1}{3}$ 
    (D) $\large \frac{1}{9}$
    (E) $\large \frac{1}{27}$

Pembahasan:

$\large ^{u}\textrm{log}\: 2^{2x}-\: ^{u}\textrm{log}\: 2^{x-2}=3$ 
$\large ^{2^{x}}\textrm{log}\: 2^{2x}-\: ^{2^{x}}\textrm{log}\: 2^{x-2}=3$
$\large ^{2}\textrm{log}\: 2^{\frac{2x}{x}}-\: ^{2}\textrm{log}\: 2^{\frac{x-2}{x}}=3$
$\large \frac{2x}{x}-\frac{x-2}{x}=3$
$\large \frac{x+2}{x}=3$
$\large x+2=3x$
$\large 2x=2$
$\large x=1$

maka 
 $\large 3^{x}$
 $\large =3^{1}$ 
 $\large =3$ 

Jawaban ________________________________ (A) 

Tidak ada komentar: